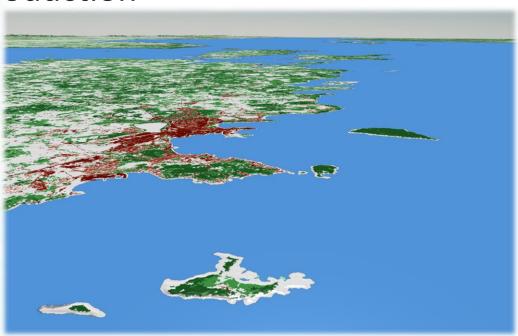

Introduction

The 20m High Resolution Layer (HRL) Forest provides information on the spatial extent, distribution and characteristics of tree cover for the whole of Europe (EEA-39 countries).



Introduction

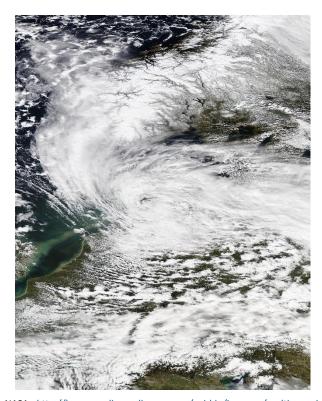
3D-View on Tallinn:

- HRL FTY 2012 (green)
- HRL IMD 2012 (rot)
- EU-DEM (height)

This submodule shows how the Copernicus HR Forest Layer can be used to support damage detection in forests.³

Introduction

- Damages in managed forests (due to pests, weather or fire) result in a loss of trees and can have large commercial or environmental impacts. Locating and quantifying forest damage at an early stage can limit the losses.
- Concept of forest damage detection
- Making use of Copernicus EO data and the HRL Forest Layer, together with additional pre-/post-event EO observations.
- <u>Use case:</u> A German forest owner association wants to assess the damages caused by storm *Niklas* in March/April 2015 nearby Munich.



Storm Niklas

- Origin: nearby Iceland
- Duration: 29/03 02/04/2015
- Max. wind speed: 192 km/h
- Damage in Germany:
 - Total damage ca. 750 millions EUR
 - Forest damage: ca. 2 millions m³

Rapid and consequent removal operations of storm-damaged timber by governmental, local and private forestry operations to prevent bark-beetle infestations

NASA - http://lance-modis.eosdis.nasa.gov/cgi-bin/imagery/realtime.cgi

Input Data

- High Resolution Layer Forest
 - Tree Cover Density
 - Forest Type
- VHR True colour Image Mosaic 2012
- Pre- and post-event VHR multispectral satellite data

Download of Copernicus Forest products (1)

http://land.copernicus.eu/

Copernicus is an European system for monitoring the Earth. Data is collected by different sources, including Earth observation satellites and in-situ sensors. The data is processed and provides reliable and up-to-date information about six thematic areas: land, marine, atmosphere, climate change, emergency management and security. The land theme is divided into four main components:

Global

provides a series of bio-geophysical products on the status and evolution of the land surface at global scale at mid and low spatial resolution

Pan-European

provides information about the land cover and land use (LC/LU), land cover and land use changes and land cover characteristics

Local

focuses on different hotspots, i.e. areas that are prone to specific environmental challenges and problems

Reference data

All of the Copernicus services need access to in-situ data in order to ensure an efficient and effective use of Copernicus space-borne data

Pan-European

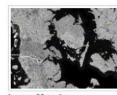
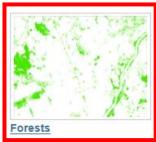


Image Mosaics

CORINE Land Cover

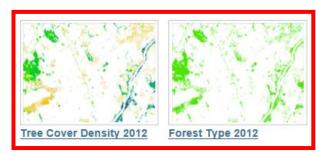
Reference Data



Related Pan-European products

Download of Copernicus Forest products (2)

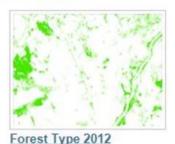
High Resolution Layers



Forests

Download of Copernicus Forest products (3)

Forests



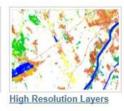
Tree Cover Density 2012

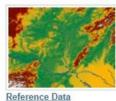
20m pixel-based product

TCD-020m F40N20

- 0-100% Tree Cover Density
- 2 class categories: all non-tree areas; tree cover

- 20m spatial resolution
- 0.5 ha Minimum Mapping Unit
- 10-100% Tree Cover Density
- 3 thematic classes: non-forest, broadleaved, coniferous




Integrating Pan-European Image Mosaics (1)

Pan-European

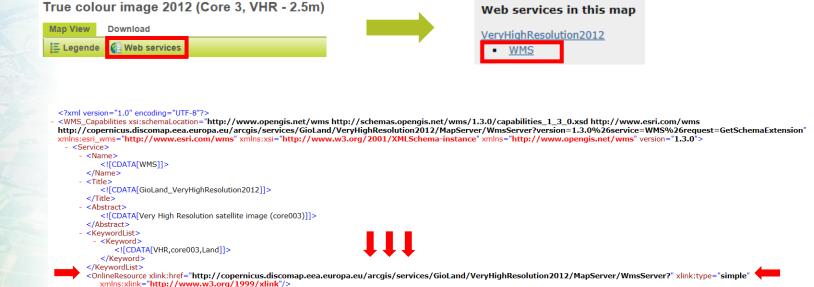
Very High Resolution

Related Pan-European products

Image Mosaics

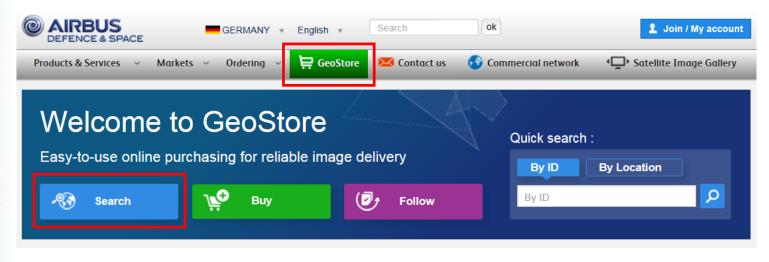
True colour image 2012 (Core 3, VHR - 2.5m)

True colour image 2012 (Core 3, VHR - 2.5m)



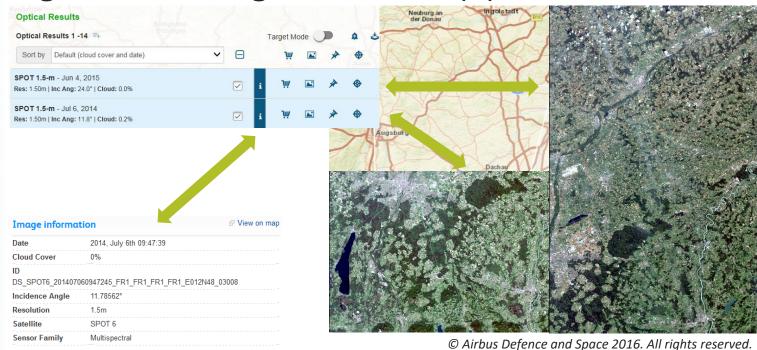
<ContactInformation>

Integrating Pan-European Image Mosaics (2)



Commercial Catalogue Search: e.g. AIRBUS DS (1)

http://www.intelligence-airbusds.com/



© Airbus Defence and Space 2016. All rights reserved

▶ Detailed information

Catalogue Search: e.g. AIRBUS DS (2)

Storm Damage Investigation

True colour image 2012 (Core 3, VHR - 2.5m) WMS overlaid with AoI

Area: 280 ha

Familiarizing with the Area of Interest (Pre-event)

Tools and Layers:

- Geographic Information System (GIS)
- AoI shapefile
- WMS: CORE_03 2.5m VHR mosaic (true colour)

Adding HRL Forest Information (1)

Tools and Layers:

 Adding 20m pixel-based tree cover mask derived from HRL Forest / Tree Cover Density product

Adding HRL Forest Information (2)

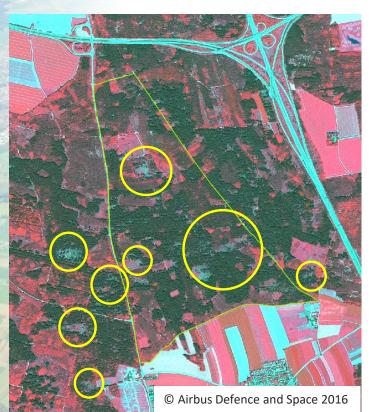
Tools and Layers:

Adding 20m Forest Type information

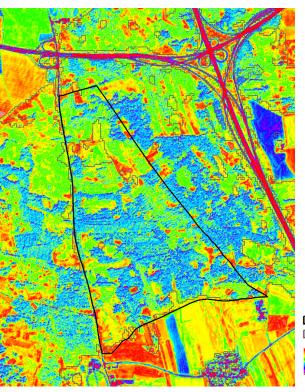
SPOT-6 1.5m VHR Acquisitions

Pre-event scene

- acquired on 2014-07-06
- 1.5m multispectral VHR image
- false colour infrared representation
- Alternative(s): VHR imagery (1-2.5m) from ESA Data Warehouse



SPOT-6 1.5m VHR Acquisitions


Post-event scene

- acquired on 2015-06-04
- 1.5m multispectral VHR image
- false colour infrared representation
- forest damages clearly visible

NDVI Calculation – 2015-06-04

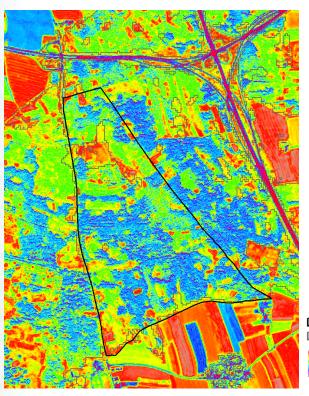
Normalized Difference Vegetation Index

- well-established vegetation indicator
- easy to implement and interpret
- provides information on the level of photosynthetic activity
- values range from -1.0 to +1.0

$$NDVI = \frac{(NIR - RED)}{(NIR + RED)}$$

☐ Area of Interest 20m tree cover mask

High: 0,704527



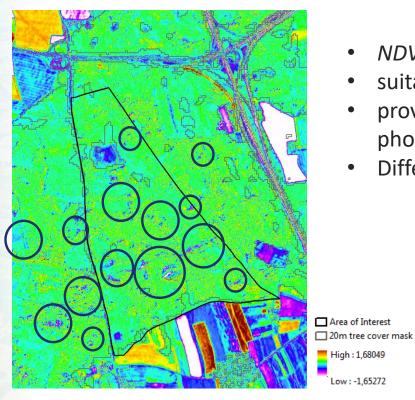
NDVI Calculation — 2014-07-06

Normalized Difference Vegetation Index

- well-established vegetation indicator
- easy to implement and interpret
- provides information on the level of photosynthetic activity
- values range from -1.0 to +1.0

$$NDVI = \frac{(NIR - RED)}{(NIR + RED)}$$

☐ Area of Interest 20m tree cover mask High: 0,685569


Low: -0.995413

NDVI Difference as Damage Indicator

- NDVI t_0 NDVI t_1
- suitable for rapid change assessment
- provides information on changes within photosynthetic activity
- Difference values range from -2.0 to +2.0

BUT, sensitive to:

- image co-registration
- sensor viewing angles
- vegetation phenology (i.e. good forest mask needed)

High: 1,68049 Low: -1.65272

Damage Detection Steps – Summary

- Classify forest characteristics (e.g. NDVI, tree cover density) preand post-event at VHR resolution
- Difference calculation: forest characteristics $t_0 t_1$
- Apply size and TCD difference threshold to identify damaged areas
- Intersect changes with tree type information
- Statistical evaluation

Damage Detection Results

Pre-event

Results

 High Resolution Layer Forest supports identification of forest damages (e.g. storm damages)

Damaged areas	Area [ha]	Area [%]
138	0.14	2.5
558	5.62	97.5
696	5.77	100
	138 558	areas 138 0.14 558 5.62

Percentage of damaged forest: 2.07%

