

Using Sentinels 2 and 3 in water quality monitoring

Tiit Kutser, Tuuli Soomets Kaire Toming, Birgot Paavel, Ele Vahtmäe

Remote Sensing Department, Estonian Marine Institute

Providing PRODUCTS and SERVICES for all marine applications

Salinity
Temperature
Sea Level Height
Nutrients
Waves

Sea Level Height
Sea Surface Temperature
Water properties
(chlorophyll-a, suspended
matter, CDOM,
transparency/turbidity)

Providing PRODUCTS and SERVICES for all marine applications

Remote sensing products

Global products

Sea Level Height Sea Surface Temperature

Regional products

Water properties (chlorophyll-a, suspended matter, CDOM, transparency/turbidity, etc.)

Providing PRODUCTS and SERVICES for all marine applications

Baltic Sea water quality products

Only chlorophyll-a

QUALITY INFORMATION DOCUMENT

No correlation with *in situ* data = The only validated CMEMS product is useless

Providing PRODUCTS and SERVICES for all marine applications

CMEMS is still using ageing MODIS What about using OLCI?

In situ chlorophyll-a, mg m-3

Red dots – CMEMS product based on MODIS
Blue dots – Sentinel-3 OLCI using C2RCC processor

In situ data from Estonian National Monitoring Program (2017)

Optical complexity of the Baltic Sea

- * High latitude = low signal
- * CDOM dominated = low signal
- * Low signal = atmospheric correction more difficult
- * 1-2 orders of magnitude difference in optical water properties
 - * Different phytoplankton groups = Seasonal algorithms may be needed

Optical complexity of the Baltic Sea

HELCOM standard is integral sample

Remote sensing increases significantly spatial and temporal coverage of data about the sea

BUT

Developing reliable methods requires in situ data from a particular waterbody collected during different seasons

Perspectives of using remote sensing in coastal (and inland water) monitoring Most previous satallites (e.g. MERIS) were one-off scientific missions Copernicus Program designed for decades of continuous data

OLCI on Sentinel-3 MSI on Sentinel-2

300 m resolution Daily (1-2 images) 10 and 20 m resolution every 2-3 days

Sentinel-3

Sentinel-2

Lake Peipsi, Sentinel-2

Lake Peipsi, Sentinel-2

CMEMS will be only water quality remote sensing

Copernicus Program can provide much more

Mapping water depth

Benthic habitat mapping

< 1.5 km² or 0.00003% of territorial waters mapped with video

Sentinel-2

Benthic habitat, bathymetry, and human impact

30 October 2016

ESA SEOM Sen2coral Project John Hedley

Current developments in Estonia

remote sensing

Article

Mapping Water Quality Parameters with Sentinel-3 Ocean and Land Colour Instrument Imagery in the Baltic Sea

Kaire Toming ^{1,2,3} , Tiit Kutser ^{1,*}, Rivo Uiboupin ⁴, Age Arikas ⁴, Kaimo Vahter ⁴ and Birgot Paavel ¹

C2RCC processor (OLCI standard)

Chlorophyll-a $r^2=0.006$ (up to 0.31 for some cruises)

Suspended matter r²=0.11

Absorption and scattering products $r^2=0.02-0.2$

Current developments in Estonia

Empirical algorithms

Chlorophyll-a up to r^2 =0.61 for some cruises and some algorithms

Suspended matter up to $r^2=0.69$

CDOM up to $r^2=0.63$

Current developments in Estonia

Article

First Experiences in Mapping Lake Water Quality Parameters with Sentinel-2 MSI Imagery

Kaire Toming 1,2, Tiit Kutser 1,*, Alo Laas 2, Margot Sepp 2, Birgot Paavel 1 and Tiina Nõges 2

Conclusions

*CMEMS does not provide any water quality remote sensing products for the Baltic Sea

*Copernicus program opened great new potential for aquatic research and monitoring using remote sensing

*The list of possible remote sensing products goes far beyond CMEMS plans (e.g. coastal and benthic products)

Thank you for your attention!